

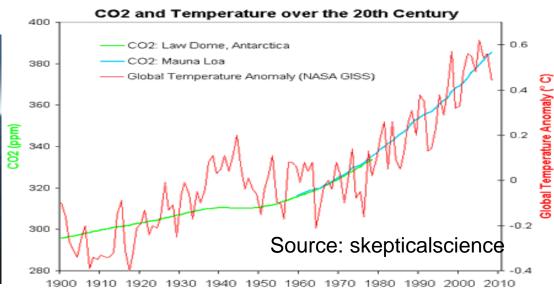
# 建築模擬軟體開發

林鴻文 工業技術研究院 綠能與環境研究所

2013.9.17

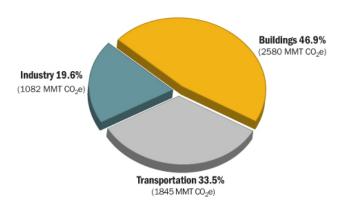


### 報告大綱


- 1. 能源使用概况分析
- 2. 建築能源模擬重要性
- 3. 建築模擬軟體開發
  - 非即時模擬
  - 即時模擬與控制
- 4. 結語






### 全球氣候變遷







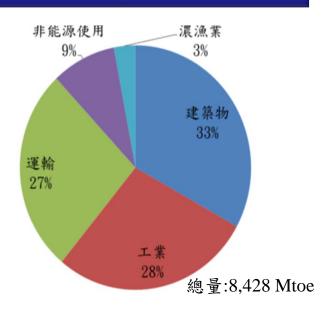
由1850年至今,全球地表平均温度已經上升 0.76℃,海平面上升約17公分



Source: WWF

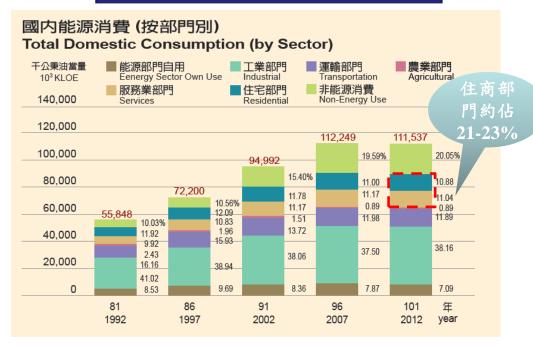
U.S. CO<sub>2</sub> Emissions by Sector

Source: ©2010 2030, Inc. / Architecture 2030. All Rights Reserved.


Data Source: U.S. Franck Information Administration (2009).






### 建築對節能減碳的重要性

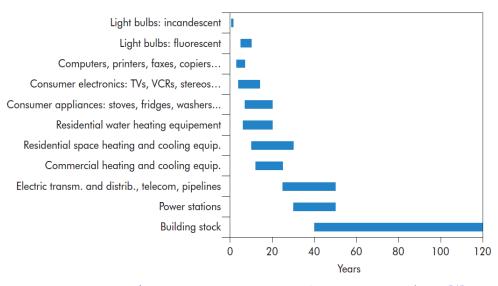
#### 全球各部門總計耗用能源比例

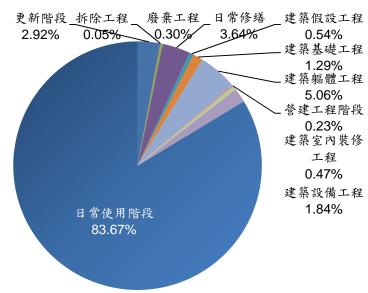


Source: Key World Energy Statistics 2010, p.30, IEA

#### 台灣各部門能源消耗總量




Source:民國101年能源統計手冊,p.43,經濟部能源局


- 全球1/3能源消耗在建築。
- 台灣住商類建築合計佔耗能21-23% (以耗電計算,則約佔40%),加計工業 廠房則估計佔整體能耗30%以上,比例並逐年攀升。





### 40 建築節能是永續發展的核心

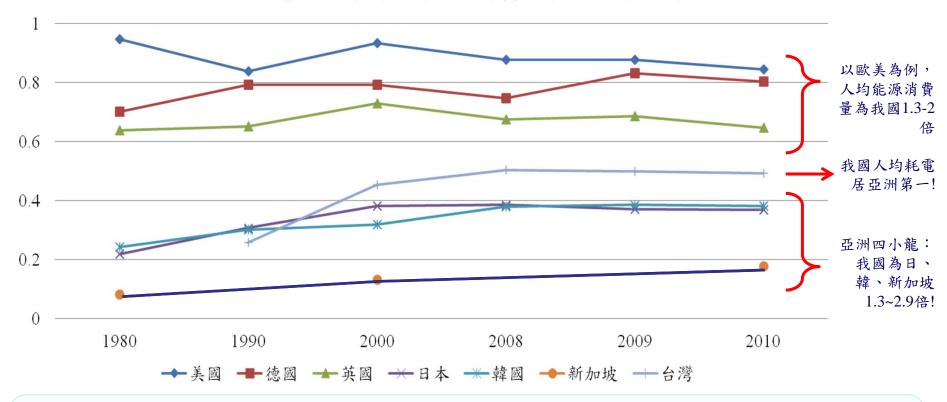




建築相關耗能設備與基礎設施生命期[1]

建築40 年生命週期CO2排放量<sup>[2]</sup>

- 建築物是各種耗能設備系統載具,且是住商部門生命週期(可達40-120年[1])最長者,故任何節能措施的效 果遠比其他產業貢獻大而具體,是節能減碳最需積極推動的重點產業。
- 國家重要政策:
  - □ 98年全國能源會議結論:我國住商建築部門仍有諸多節能減碳技術開發與推廣之需求,宜應持續推展相 關事官。
  - □ 99年行政院四大智慧型產業納入『智慧綠建築』。明確指出營建業界研發能量不足、建物監測管制系統 缺乏共通平台,亟待政府帶頭投入,以加速落實低碳島之政策目標。
  - □ 99年環保署「溫室氣體國家適當減緩行動 (NAMAs)」向國際積極承諾於2020 年前,我國將積極達成溫 室氣體排放總量比排放基線 (Business as usual, BAU) 減少45%之目標。


[1] p.209, IEA ETP 2010[2] pp.81-82, 建築生命週期CO2 排放量評估之研究-辦公建築使用階段CO2 排放量解析,內政部建築研究所協同研究報告,中華民國95 年12 月





### 我國現況與國際評比

#### 全球主要國家住宅部門人均能源消費量(噸油當量/人)



• 以新加坡為例,以強制綠建築標章 (>2500 m²公共建物) 搭配獎勵、補助省電設備、規範建築服務與設備能源效率標準 (SS530) 與操作效率(如LPD)、補貼 (聘用建築節能顧問)、比賽獎勵 ("-10%能源挑戰"計畫)

資料來源: Electricity information2011(IEA)、能源統計手冊(能源局)、人口統計資料以及國民所得統計常用資料(主計處)、Singapore Department of Statistics、APEC Energy Demand and supply outlook 2006、APEC Energy Statistics 2008/2003

註解:礙於資料來源限制,新加坡僅有1980、2000以及2010年之資料、我國僅有1990、2000、2008、2009,以及2010年之資料





### 台灣、下一步?



讓綠色產業成為帶動就業與成 長新亮點,將鼓勵民間擴大對 綠能產業、綠色建築、綠色生 產研發與投資,讓台灣一步步 成為「低碳綠能島」2012.05.20





### 報告大綱

- 1. 能源使用概况分析
- 2. 建築能源模擬重要性
- 3. 建築模擬軟體開發
  - 非即時模擬
  - 即時模擬與控制
- 4. 結語





### **Energy Performance of Buildings**

#### Two methods to obtain energy use of buildings:

- Measurement
  - Beyond monthly utility bills
  - Real data, 'trust without questions'
  - Can be time-consuming and costly for detailed measurement

#### Simulation

- Provide very detailed results end uses, monthly, subhourly, systems/components/zones levels
- 'Quick' and cost-effective
- Questionable results
- Both methods are needed!





### Energy Performance of Buildings Simulated vs. Measured

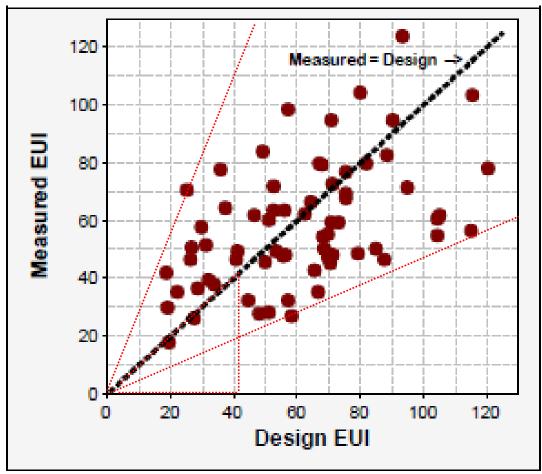



Figure ES- 4: Measured versus Design EUIs All EUIs in kBtu/sf

Source: NBI Study 2008



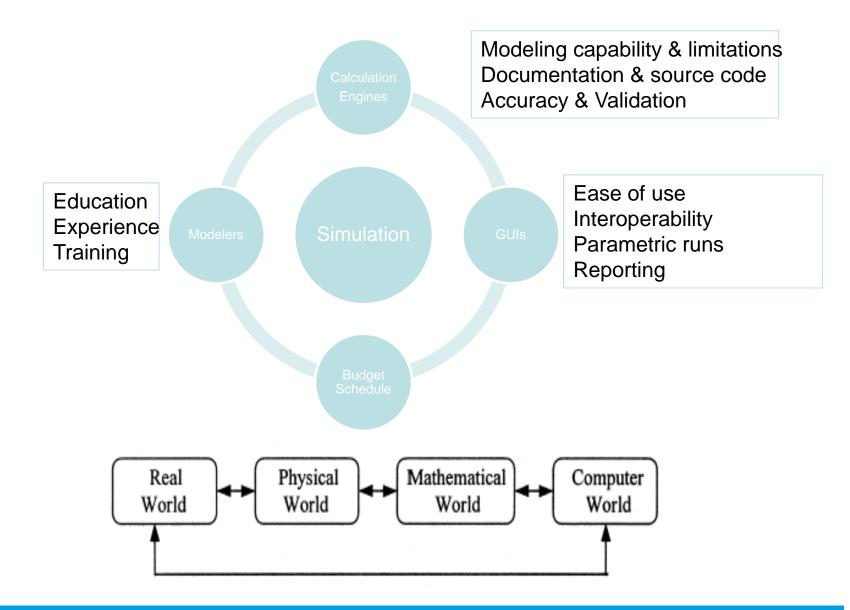
### 建築能源模擬重要性

- ➤ Back to Basics understanding energy use of buildings is the most important step towards energy savings:
  - Where energy is used?
  - How much energy is used and how energy is used?
  - When energy is used?
  - Who and why uses the most amount of energy?

To identify waste, deficiency, and savings opportunities!






### 建築能源模擬重要性

- Evaluate design alternatives to help make better decisions for new buildings
  - Unconventional, innovative low energy designs that cannot rely on rulesof-thumb or previous design experience
- Demonstrate code compliance using the performance path when prescriptive path is not allowed, e.g. WWR >40% in ASHRAE 90.1-2010
- Building energy benchmarking, rating, labeling
  - LEED certification, ASHRAE bEQ
  - Incentive programs: SBD, EPAct §179D Federal Tax Credit
- Identify and evaluate retrofit measures for existing buildings
- Used in the development of building energy code and standards
- Sometimes to predict actual energy use of buildings





# **Complexity of Simulation**







### 報告大綱

- 1. 能源使用概况分析
- 2. 建築能源模擬重要性
- 3. 建築模擬軟體開發
  - 非即時模擬
  - 即時模擬與控制
- 4. 結語





### 建築模擬市場分析

- 全世界共有395種建築模擬軟體
- ▶ DOE經費支持16件軟體研發









Source: DOE Website

#### **GUIs for EnergyPlus**

- CYPE-Building Services,
- Demand Response Quick Assessment Tool
- DesignBuilder
- Easy EnergyPlus
- EFEN
- AECOsim
- Hevacomp
- MC4 Suite
- SMART ENERGY
- EPlusInterface
- COMFEN
- Simergy
- OpenStudio



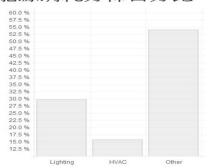


# 工業技術研究院 Industrial Technology Research Institute Summary of features

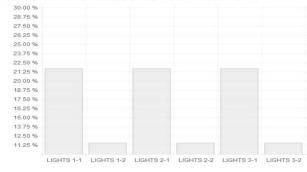
|             | DOE-2                                                               | DeST                                                            | EnergyPlus                                                                                               |  |  |  |
|-------------|---------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| Country     | USA                                                                 | China                                                           | USA                                                                                                      |  |  |  |
| Inputs      | Text, BDL                                                           | mdb, MS Access                                                  | IDF, IDD                                                                                                 |  |  |  |
| Outputs     | Summary & hourly reports                                            | Summary & hourly reports                                        | Summary & detailed reports                                                                               |  |  |  |
| GUI         | Simulation engine only;<br>eQuest, VisualDOE,<br>EnergyPro, etc.    | Based on AutoCAD;<br>An independent GUI<br>involved in DeST 3.0 | Simulation engine only;<br>With 3rd party's GUIs for<br>building modeling, Open<br>Studio, DesignBuilder |  |  |  |
| Algorithms  | Surface heat balance:<br>Response Factor;<br>Zone Weighting Factors | Zone heat balance: State Space Method                           | Surface heat balance:<br>Air heat balance                                                                |  |  |  |
| Limitations | Linear systems, accuracy                                            | Linear systems                                                  | Potentially long run time for large models                                                               |  |  |  |
| Language    | Fortran                                                             | C++                                                             | Fortran                                                                                                  |  |  |  |



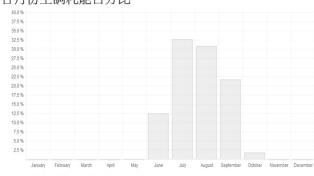



# **Solution Algorithm**

|                                | DOE-2                                                                                                                                                                                                                       | DeST                                                                                       | EnergyPlus                                                                                                |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Heat balance<br>method         | Surface heat balance:<br>Response Factor;<br>Weighting Factor                                                                                                                                                               | Zone heat balance: State Space Method                                                      | Surface heat balance: CTF,<br>CondFD;<br>Air heat balance                                                 |
| Temperature & load calculation | HVAC system related;<br>Ideal HVAC system: SUM                                                                                                                                                                              | Ideal HVAC system;<br>Control both temperature<br>and humidity as required                 | HVAC system related; HVACTemplate: IdealLoadsAirSystem, control both temperature and humidity as required |
| Solution method                | Sequential iteration;<br>LOADS: assume that<br>each space is always kept<br>at a constant temperature<br>SYSTEMS: produce<br>actual thermal loads<br>based on an hourly<br>variable temperature with<br>HVAC system related | Simultaneous iteration for<br>all zones;<br>Trial for zone and ideal<br>system integration | Sequential iteration; Predictor-Corrector for zone and system integration                                 |
| Time step                      | Hourly                                                                                                                                                                                                                      | Hourly Can be sub-hourly                                                                   | Sub-hourly<br>Default: 10 minute                                                                          |







#### 能源消耗分佈百分比



#### 室內各空間照明耗能百分比



#### 各月份空調耗能百分比

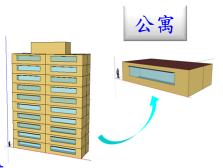






DOE Pilot run (until 2013 Sep)

#### 技術特點


- 1. 全球首例:跨平台、網路版、圖形化線上模 擬、耗能排序、節能建議、節能預測、節費預 測、全系統購置建議,可做(節能標章)產品媒 合
- 2. 結合國家資料庫 (8縣市氣象資料、7500筆節能標章、5000筆全國普查),可做雲端建物能源分析平台與分級





依據普查結果建置兩類建築

- 透天-3F與4F
- 公寓-區分一樓、中樓層、頂樓



非空調區域

(廚房、浴廁、走道...等)

空調區域

(臥室與客廳)

建築物正面



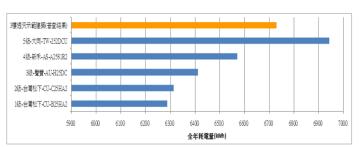


走道等其他非空調區域
非空調區域
(廚房、浴廁...等)

企調區域
(臥室與客廳)

走道等其他非空調區域

建築物正面


#### ◆ 示範建築與普查結果差異比較

| 3F<br>連棟式住宅                                              | 207m <sup>2</sup> | 年度耗電<br>kWh | 佔總耗電量之百分比%<br>(模擬結果) | 佔總耗電量之百分比 %<br>(全國普查結果)    |
|----------------------------------------------------------|-------------------|-------------|----------------------|----------------------------|
| 樓高3m、使用面積207m <sup>2</sup> 、空調面積72m <sup>2</sup>         | HVAC              | 1716.20     | 25.50                | 25.2                       |
| (空調面積佔比為34.78%),建築物正面與                                   | Lighting          | 1631.88     | 24.24                | 24.5                       |
| 背面開窗、每一窗戶面積3m <sup>2</sup> 、正面窗戶<br>水平遮陽(寬0.5m),南北座向,窗牆比 | Equipment         | 3382.83     | 50.26                | 50.3                       |
| =14.32%                                                  | Total             | 6730.91     | EUI=32.52            | EUI <sub>mean</sub> =32.92 |

#### ◆模擬結果輸出建置

- 1. 依個人歷史模擬數據進行 組合分析
- 2. 依據同棟建築對5級空調之 建物耗能評比。








此網頁平台共分成五個步驟,即可運用普查之既有建築模型進行各類分析

步驟1:選擇身分別



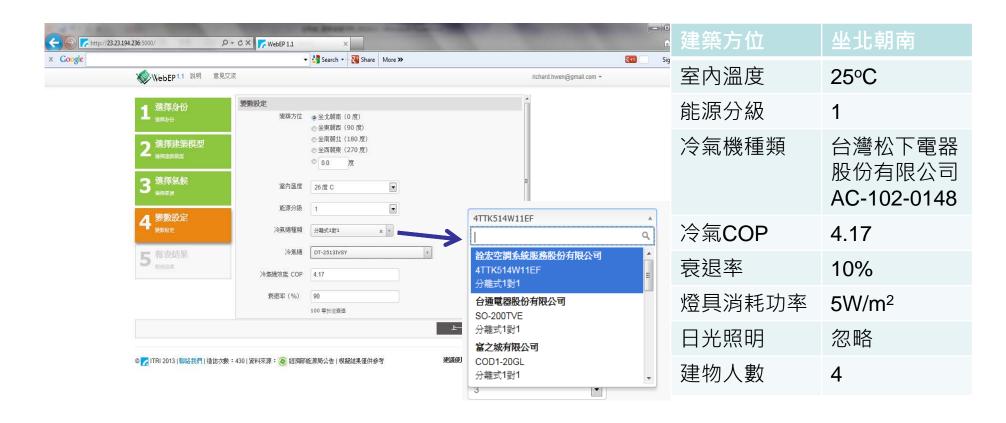


#### 步驟2:選擇住宅模型





步驟3:選擇氣候區;目前全台共有八個氣候區氣象資訊(台北、新竹、台中、嘉義、台南、高雄、花蓮、台東)








### 案例分析

步驟4:變數設定;包含建築方位、室內溫度、能源分級、冷氣機種類、冷氣COP、衰退率、燈具消耗功率、日光照明、建物人數

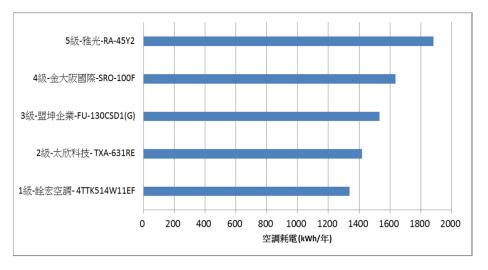






### WebEP使用方式

步驟5:結果輸出


1. 基本資料輸出



節能標章產品依據能源分級1 至5級全年空調耗電比較。

#### 2. 節能標章產品評價比較









### 報告大綱

- 1. 能源使用概况分析
- 2. 建築能源模擬重要性
- 3. 建築模擬軟體開發
  - 非即時模擬
  - 即時模擬與控制
- 4. 結語





# 模擬與建物能管系統(BEMS)

### 雲端運算服務

- ●**動態式**建築能耗分析
- 使用者行為分析、學習 及 self-feedback 系統

傳統式建築物耗能 分析與模擬工具

控制變因(溫 度,相對溼度, 光通量,...)

根據使用特性客 製化舒適條件

> 紀錄人員使 用特性

回饋計算

動態式建

築能耗分

析與模擬

- 產生建築內部次 系統最佳化控制 策略
- •提升使用者具意 義之節能資訊
- •顯示即時系統資 訊
- 異常操作預警

建築能耗分 析與模擬

原始設計

新設計

感知器

建築物智慧能源運維策略



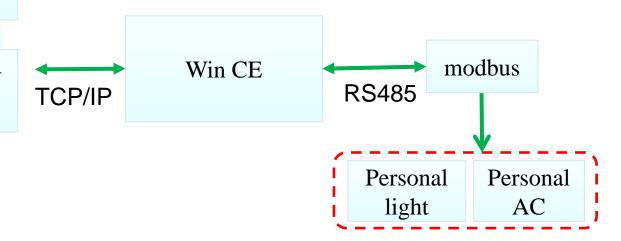


#### 數據接收

温度、濕度、風 速、風向、日 照、雨量

TCP/IP



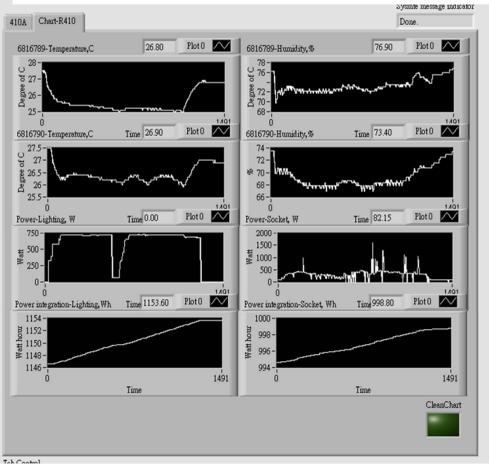

#### iSim Service

(EnergyPlus+最佳化)

最佳化分析模組 冷氣出風量/流 量控制

### 4D模擬與控制架構

▶動態運算模組模擬分析、預測即時動態建築能耗情形,提供最佳化節能運轉方案,同時鏈結訊號控制設備,即時反饋控制建築次系統,使建築能耗運行最佳化。







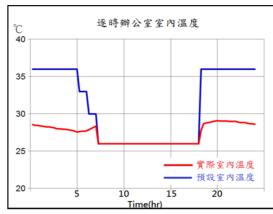

### **GUI**

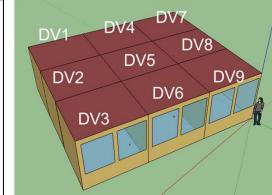









## 工研院64館410室即時模擬分析


#### 4D比EnergyPlus 分析之結果比較: 全天(7/15)節省約5.5%之用電量 (kWh)

|                   | Cooling Design Air Flow Rate |        |        |        |        |        |        | Total<br>Energy<br>(KWH) | % energy increased |    |      |
|-------------------|------------------------------|--------|--------|--------|--------|--------|--------|--------------------------|--------------------|----|------|
|                   | DV1                          | DV2    | DV3    | DV4    | DV5    | DV6    | DV7    | DV8                      | DV9                |    |      |
| 4D Result         | 0.0258                       | 0.0269 | 0.0264 | 0.0237 | 0.0235 | 0.0254 | 0.0321 | 0.0244                   | 0.0271             | 36 | 0.00 |
| EnergyPlus Result | 0.0297                       | 0.0323 | 0.0437 | 0.0299 | 0.0324 | 0.0439 | 0.0297 | 0.0323                   | 0.0425             | 38 | 5.56 |

#### 最佳化分析結果

|                   | Total Electric Energy [J] |          |  |  |  |
|-------------------|---------------------------|----------|--|--|--|
| 目標時段              | EnergyPlus                | 4D       |  |  |  |
| 14:00:00~14:30:00 | 5.79E+06                  | 5.68E+06 |  |  |  |
| 14:30:00~15:00:00 | 5.86E+06                  | 5.70E+06 |  |  |  |
| 15:00:00~15:30:00 | 5.87E+06                  | 5.69E+06 |  |  |  |









### 智慧建築管理控制的難題


極不友善的使用介面, 功能越多的系統越不友 善



控制複雜的建築系統需要智慧決策,技術尚未成熟 ???



未來的智慧建築管理控 制 複雜的設備連線與程式 撰寫,高成本封閉系統



BACnet, Lon, Modbus, Ethernet, RS-485.... 西門子、Johnson、 Honeywell...

極度自然簡易的 使用介面

具有智慧感知與 決策能力 通用的隨插即用設備網路系統





### 未來的智慧建築管理控制


### 高挑戰目標:

極度自然簡易的使用介面,隨插即用的設備網路系統,並具有智慧感知與決策能力

#### 語音辨識/回覆



- 隨插即用固定與動態麥克風陣列/回饋裝置(喇叭)
- 語音辨識
- 聲源室內定位
- →智慧決策系統




- •節能決策軟體(模擬、診斷、虛擬電表、需量管理)
- 語意解析與人工智慧提供相關服務(居家照護、行事曆、鬧鐘、天氣、交通、生活資訊)
- 隨插即用設備通訊軟硬體技術(照明、空調、家 電.....)





### 結語





# 謝謝聆聽敬請指教

林鴻文 工業技術研究院綠能與環境研究所 <u>lhw@itri.org.tw</u> (03)5914880